
CSCI 4448
Homework #9

Ben Limmer & 
Zachary Clark



Summary
Throughout the course of the three iterations, we produced a final system true to our original 
mockups. The system allows you a registered user to add three widgets: calendar, bus and 
weather. The object-oriented nature of the design allows for this prototype to be significantly 
expanded upon with little to no maintenance of existing code.

The following sections relate to how the system has changed since our submission to Homework 6:

UI Mockups: our final system is very close to the original UI mockups we submitted in the sixth 
homework assignment. Instead of gesture-based control of the settings page, we opted for an 
interface that did not respond to gestures (having an edit button instead of requiring a gesture). 
Other than this small deviation, we implemented the system to match our UI mockups as closely as 
possible.

Data Storage: as discussed in Homework 6, Ruby on Rails handles interactions with the database, 
so the specific database used on the back-end was not of great importance. Our current production 
system utilizes an PostgreSQL database, but it can easily be swapped out for another flavor of 
database because of the interaction between ActiveRecord and the database in Ruby on Rails.

Sequence Diagrams: the interactions with the system match the sequence diagrams from 
Homework 6.

Architecture Diagram: the final architecture of the system matches that discussed in Homework 6.

Class Diagram: please see the class diagram later in this submission to see how its changed. The 
main differences are in naming (for methods and attributes), as well as the specific implementations 
of each widget's data and data runner's. These changed when we got far enough to begin seeing 
what sort of data the APIs we used were returning. We also added a new controller 
(HomeController) to handle a few actions that didn't make sense within the WidgetsController, such 
as the api endpoint for remembering which widget the user was last viewing.

All our work is available at https://github.com/spyyddir/launchpad. You can find our source code in 
addition to a timeline of commits and issues resolved by Zac (spyyddir) and Ben (l1m5).

Additionally, you can navigate to our live application hosted at http://oolauchpad.heroku.com.

All the following images are screenshots of the iOS simulator running our installed app. None of the 
following are mockups.

https://github.com/spyyddir/launchpad
http://oolauchpad.heroku.com


If Launchpad is browsed to using Mobile Safari, this page is displayed informing the user that they 
should install the application to their home screen for a better browsing experience. The tooltip 
shows the user how to go about installing the application.



This is our neat-o splash screen that comes up as the application is loading. Its awesome-ness 
can't be described in words.



Once installed, the application presents this screen for the user to sign in or sign up. We tried to 
mimic Apple's design and stick within the guidelines presented in the HiG. All the tap targets are 
reasonably sized, and the positioning of UI elements falls within the Apple norm.



If the user taps "Sign Up" on the previous screen they are taken here. We decided to keep the 
number of required fields to a minimum to facilitate easy sign up. The next few screen are all 
based on Devise for the authentication system, and are self-explanatory.





This screen is in Mobile Safari, rather than the installed app, because this screen would only 
be reached by a user clicking a "reset my password" link from within an email. iOS does not 
provide a way for links to open in installed web apps, so this screen was built to fit within the 

UI of Mobile Safari.





This is the "Settings Widget", which lives as the farthest left panel of the set. We put Widget in 
quotes there, because its a rather special case. It is designed like a Widget, but its functionality is 
to edit the settings and add and remove the user's choice in Widgets. You can see in this screen 
that the user has 3 Widgets.

Also, if the user wishes to sign out, we have let them do that at this screen.



This is the settings Widget with the "Edit" toggle turned on. Inspired by Apple's default installed 
World Clock app, the settings pane shows the options for the Widgets once the "Edit" link has been 
tapped. Tapping it again hides them. You can't see it in a static screenshot, but the "Edit Settings" 
and "Delete" buttons fade in and out, similar to how the controls do in the World Clock app.

The last 3 screen shots are all states within the main view of the application. The screens sit next 
to each other, and are all delivered by one action within the WidgetsController ("index"). The user 
simply needs to tap the dots at the bottom to switch screens.



This screen is powered by WidgetsController.new and is reached when the users taps the "+" on the 
settings widget. Tapping any of the "Add" buttons submits a form to WidgetsController.create, which 
instantiates a new Widget object and adds it to the current user's collection of Widgets, then redirects 
the user to WidgetsController.edit for the new Widget so they can put in their settings.



This is the settings page for the Weather widget. You enter the zip code that you're interested in 
finding out weather information for. This view is rendered through the WidgetsController "edit" action. 
It polymorphic-ly determines which settings options to show based on what subclass of Widget is 
being shown.



This is our Weather Widget running live. Based on the zip code the user has set (seen in the 
settings screen), the Widget calls its DataRunner (in this case hooked up to Wunderground) to get 
a forecast for today and the next 3 days. Because we could theoretically switch out data runners to 
provide access to a different API (like Yahoo! for example), the data is stored without reference to 
its source: simply as a set of days, each with "high", "low", "conditions", "day of the week", and 
"conditions image". The code is also loosely coupled enough that it would be trivial to design 
another widget that works off the same data, presenting the weather differently.



This is the view to edit settings for the bus widget. Currently, this is not the most user-friendly way to 
enter data since you have to enter a stop ID from RTD's database. In the future, this could be 
expanded to use GPS or another more user-friendly data input method. This view is rendered 
through the WidgetsController "edit" action. It polymorphic-ly determines which settings options to 
show based on what subclass of Widget is being shown.



This is our Bus Widget running live. Based on the stop ID and route the user has set (seen in the 
settings screen), the Widget calls its DataRunner (in this case hooked up to the RTD data files) to 
display the upcoming times and past buses for the last thirty minutes. Data is read from data files in 
Google's Open Transit format, which the majority of public transportation systems nationwide use 
to provide data to Google Maps.



This is the (very) simple interface for the Calendar settings. It simply utilizes the Google Calendar 
API and OAuth2 to grab information from the user's Google Calendar. We opted to use OAuth2 
because our application no longer needs to handle the user's sensitive Google credentials. The next 
screenshot shows the Google pages that the user is directed to in order to authorize Launchpad to 
access their calendar information.



The user enters in their Google username and password into the Google page displayed. This 
interaction happens only with Google, and Launchpad never receives any information regarding the 
user's Google username or password.



The user now sees the "scope" that Launchpad is requesting and is prompted to allow or deny 
access to the application. When the user presses "allow access", Google send us an authorization 
code with which an access token is provided. This token is then used to grab the user's Google 
calendar information.



This is our Calendar widget running live. Data is pulled from the Google Calendar. Currently, the 
view only updates manually, but a cron job could easily be set up to run every hour, every five 
minutes, etc. The reason the production code does not do this is that our host, Heroku, charges for 
this functionality. Additionally, the reason these do not update constantly is that Google charges if 
we go over their free API usage.



Due to the flow of OAuth2, Launchpad will occasionally be deauthorized from Google's API. In the 
event that this happens, the user will be prompted on the Calendar widget page to reauthorize with 
Google. The access flow is the same as shown in the settings above.



index
edit
update
new
create
delete

WidgetsController

getDataRunner
setDataRunner
getSettingsAsHash
ActiveRecord Defaults

id
user_id
dataRunner
serializedSettings
serializedCurrentData

Widget

strategy

RTD API GCAL 
API Wunderground 

API

Devise
(handles helpers and 

SessionController)

HW6 Class Diagram

All ActiveRecord Defaults

id
email
password
password_confirmation
confirmation_token
confirmed_at
remember_token
remember_created_at
widgets
timestamps

User

The top half are virtual 
attributes, written as setters 
and getters into 
serializedSettings

stop_id
BusWidget

next_times

The bottom half are virtual 
attributes, written to read from 
the Widget's 
serializedCurrentData

temp_high
temp_low
conditions

zip
WeatherWidget

todays_events[]

google_user
google_pass
token

CalWidget

update
DataRunner

update
BusDataRunner

update
CalDataRunner

update

WeatherData
Runner

Each DataRunner will likely 
implement internal helper 

methods specific to the API, 
but we haven't started 

implementing to we're not 
sure what they will be.

For the Widget Classes:



index
edit
update
new
create
delete

WidgetsController

view
available_settings
update_data
title
after_settings_update_action

id
user_id
data_runner
serialized_settings
serialized_current_data

Widget

strategy

RTD API GCAL 
API

Wunderground 
API

Devise
(handles helpers and 

SessionController)

Final Class Diagram

All ActiveRecord Defaults

id
email
password
password_confirmation
confirmation_token
confirmed_at
remember_token
remember_created_at
widgets
timestamps

User

stop_id
line

BusWidget

stop_times
stop_name

forecast
today
rest_of_week

zip
WeatherWidget

timed_events
needs_to_reauth
add_day_events

access_code
access_token
refresh_token

CalWidget

update
possible_widgets
works_with?

DataRunner::Base

update
get_stop_info
get_trips
get_stop_times

DataRunner::Bus

update
get_calendars
grant_token_from
_refresh_token
save_event_data

DataRunner::Cal
endar

update
get_forecast

DataRunner::We
ather

index
set_current_screen
return_from_google

HomeController



What have you learned about the process of analysis and design now that you have stepped 
through the process to create, design and implement a system in five weeks?

The most apparent thing to us was how much it helped to spend a lot of time thinking about the 
problem before writing any code. For both of us, previous programming projects often involved a bit 
of pre-planning, but mostly design decisions were made while already programming. Doing this 
often lead to numerous structural changes over the course of the project. In contrast, with this 
project, our design did not need to change after its initial creation. The time we spent working on our 
design, and thinking through how the system should work, really paid off while iterating.

We also learned how valuable Design Patterns are. Initially, we were very unsure of how to 
implement our data runners in a clean way. While trying to think through it, we realized it was a 
perfect example of delegating behavior, and from there easily found the Strategy pattern to be a 
good fit. While we're sure our system could be even more loosely coupled, working within some 
patterns we learned in class along with others we found elsewhere helped keep our system agile. In 
the final iteration, we found ourselves conveniently working on different areas of code that 
interfaced with each other without issue of stepping on the other person's work.


